Vision-Language Models (VLMs)

Vision-Language Models (VLMs) are a powerful class of multimodal AI systems that understand both images and text , allowing capabilities such as:

  • Image captioning
  • Visual question answering (VQA)
  • Image classification with natural language descriptions
  • Text-to-image retrieval and vice versa
  • Instruction following based on visual input

🧠 What Are Vision-Language Models (VLMs)?

VLMs combine computer vision models (like CNNs or Vision Transformers) with language models (like Transformers or LLMs), learning to align visual features with semantic meaning in text.

They’re typically trained on image-caption pairs (e.g., COCO, Conceptual Captions, LAION) using contrastive learning (like CLIP) or causal language modeling objectives.


🔍 Categories of VLMs

TypeDescriptionExamples
Dual-Encoder ModelsEncode image and text separately, then compute similarityCLIP, ALIGN, FILIP
Fusion / Multimodal Encoder ModelsFuse image and text into a joint representation for tasks like VQAFlamingo, BLIP, BLIP-2, Kosmos-1, Florence
Large VLMs + Language Model (LLM-based)Use a frozen vision encoder + LLM (e.g., LLaMA, Mistral)LLaVA, MiniGPT-4, InstructBLIP, OpenFlamingo, Qwen-VL

🧪 Popular Open Source VLMs

Here’s a list of open-source and self-hostable VLMs , including their architecture type and license:

ModelArchitectureModalityLicenseNotes
LLaVAVision Encoder + LLaMAImage + TextMITStrong performance; easy to run locally
LLaVA-Next / LLaVA-NeXT-VideoImproved version, supports videoImage/Video + TextMITBetter reasoning & video understanding
MiniGPT-4Vision Encoder + Vicuna/QwenImage + TextApache 2.0Generates high-quality captions
InstructBLIPBLIP-2 + instruction tuningImage + TextMITGood for detailed instructions
OpenFlamingoMulti-modal model with cross-attentionImage + TextApache 2.0Inspired by Flamingo
Kosmos-1Multimodal sequence modelingText + ImageMITFoundation model from Microsoft
FlorenceVision Transformer + TransformerImage + TextMicrosoft Research LicenseLarge-scale foundation model
Qwen-VLQwen + Vision EncoderImage + TextTongyi Lab LicenseHigh performance from Alibaba
InternVLVit + LLMImage + TextApache 2.0SOTA performance on many benchmarks
OtterFlamingo-styleImage + TextMITDeveloped by UC Berkeley
OFv2Improved OpenFlamingoImage + TextApache 2.0More capable than v1

🛠 How to Run an Open Source VLM Locally?

Example: Running LLaVA with llama.cpp or Hugging Face Transformers

Step 1: Download the model

bash

git clone https://huggingface.co/liuhaotian/llava-v1.5-7b

Step 2: Run with Hugging Face Transformers (Python)

python

from transformers import AutoProcessor, LlavaForConditionalGeneration

import torch

from PIL import Image

import requests

model = LlavaForConditionalGeneration.from_pretrained(“liuhaotian/llava-v1.5-7b”)

processor = AutoProcessor.from_pretrained(“liuhaotian/llava-v1.5-7b”)

url = “http://images.cocodataset.org/val2017/000000039769.jpg”

image = Image.open(requests.get(url, stream=True).raw)

prompt = “USER: <image>\nWhat is the color of the cat?\nASSISTANT:”

inputs = processor(text=prompt, images=image, return_tensors=”pt”).to(0, torch.float16)

generate_ids = model.generate(**inputs, max_new_tokens=100, do_sample=False)

output = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]

print(output)

Alternative: Run via Ollama (Simpler CLI Tool)

If your model is supported on Ollama , you can just run:

bash

ollama pull llava

ollama run llava


💾 Hardware Considerations

Most open-source VLMs require GPU acceleration for real-time inference. Here’s what you need:

Model SizeGPU RAM RequiredNotes
LLaVA 7B>= 12GB VRAMCan be quantized to 4–8 GB
LLaVA 13B>= 24GB VRAMRequires larger GPUs or multi-GPU
Qwen-VL>= 24GBLarger models provide better accuracy
InternVL12–24GBOptimized versions available
Otter / MiniGPT-4~8–12GBLightweight but still powerful

Tip: You can use quantized versions (e.g., GGUF) for running on smaller GPUs or even CPUs using tools like llama.cpp.


🧬 Applications of Open Source VLMs

  • Visual assistants (help users describe surroundings)
  • Education : Explain diagrams, charts, equations
  • Accessibility : Describe images for visually impaired users
  • E-commerce : Understand product photos + generate descriptions
  • Robotics : Combine perception + reasoning for complex tasks

📚 Datasets Commonly Used for Training VLMs

DatasetPurposeDescription
COCOCaptioning, Detection120k images with captions
Conceptual CaptionsScale-up pre-trainingMillions of image-text pairs from web
LAIONImage-text pairsBillions of pairs scraped from the internet
Visual GenomeDetailed scene understandingRich annotations (objects, relations, QA)
OK-VQA, A-OKVQAReasoning over imagesRequires outside knowledge
ScienceQAScience reasoningCombines diagrams and questions
DocVQADocument understandingOCR + reasoning over document images

🧠 Advanced Topics

  • Multimodal Prompt Tuning
  • LoRA fine-tuning for domain-specific adaptation
  • Multilingual VLMs (e.g., support for non-English languages)
  • Video understanding (e.g., LLaVA-Next Video)
  • Agent-based workflows (e.g., VLM-controlled agents or robots)

✅ Learn More

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top